INTRODUCTION
Considerable attention has been paid to compressed sensing (CS) in the MRI community recently [1,2]. CS theory allows exact recovery of a sparse signal from a highly incomplete set of samples [3,4], and thus has the potential for significant reduction in MRI scan time. While most existing work has focused on Fourier encoding, non-Fourier encoding has shown some promise [5,6]. In this abstract, we design a pulse sequence to implement the Toeplitz random encoding method proposed earlier [6]. The experimental results show that Toeplitz random encoding can be realized in practice as an alternative method for CS MRI.

THEORY
Block Toeplitz random matrices have been shown to be good compressed sensing matrices [7]. To realize such an encoding scheme, a pseudo random RF pulse is generated and used for the first excitation. The subsequent excitations then use pulses with the same amplitude but linearly shifted by a fixed amount in phase from the previous one. A fixed gradient Gy is turned on to realize the Toeplitz random encoding along y, but frequency encoding Gx is still on for Fourier encoding in x.

METHOD AND RESULTS
A set of data was acquired from a 3T commercial MRI scanner (GE Healthcare, Waukesha, WI) with a single-channel coil using the proposed random encoding sequence (TE = 10ms, TR = 1200 ms, 3.2ms RF pulse, 20cm FOV, 64 × 64 matrix). Figure 1 shows the diagram of the pulse sequence. To reduce data acquisition, only the first few excitations are carried out and the reduced data are used to reconstruct the desired image using compressed sensing. Specifically, image x is reconstructed by solving the convex optimization problem: Minimize Ψx subject to Φx − y < ε [3], where Ψ is the sparsity basis, y is the acquired data after a 1D Fourier transform along the frequency encoding direction, and Φ is the Toeplitz random encoding matrix defined in Eq. [4]. The matrix A in Eq. [4] has a Toeplitz structure, where the independent elements a1, ..., an are the Fourier transform of the RF pulse in the first excitation. Due to the special property of Toeplitz matrices, the image reconstruction has a fast algorithm, whose complexity is about the same as compressed sensing for randomly sampled Fourier encoding.

CONCLUSION
We have presented a random, non-Fourier encoding technique for application of CS in MRI. The experiments have shown promising results to accelerate imaging speed with good reconstruction quality. Future work will improve the pulse sequence and investigate images with different sizes and contents for further accelerations.

REFERENCES

Figure 1. Timing diagram of the pulse sequence for Toeplitz random encoding.

Figure 2. Reconstructed images from the random encoding data. Left image is the linear reconstruction from the fully sampled (64x64) data. Middle and right images are the minimum energy reconstruction and CS reconstruction from the reduced data (R = 1.5).